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Abstract

By using a variational principle for scattering by rough interfaces, the functional

derivative of the scattered part of an acoustic field originating from a point source

is derived directly in the time domain. This general result in specialized to the case

of scattering by surfaces on which fields satisfy Dirichlet boundary conditions. It is

shown that when the small- slope appoximation is used for surface fields, a simple

result can be obtained for monostatic scattering.
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I Introduction C UALT I .. T:D 2 ! a bt

The small-slope approximation was developed by Voronovich to treat scattering of plane, t ,ipec

monochromatic, scalar waves by rough interfaces [1]. Numerical experiments have shown

that the zeroth order small-slope approximation, generally out-performs the conventional

Kirchhoff approximation without added computational work [2]. The point of the present

work is to show how the lowest order small-slope approximation is expressed when point,

pulsed sources are considered. It turns out that in the case of monostatic scattering from a

rough surface on which Dirichlet boundary conditions are satisfied, the zeroth order small-

slope approximation takes on a particularly simple form. This result is readily compared

to a result for monostatic scattering in the Kirchhoff approximation, Eqs.(31, 32) below.

The latter was developed by Berry [3] for the purpose of inferring surface roughness from

the shape of pulse echoes.

Recently Dashen and Wurmser [41 rediscovered a perturbation scheme for acoustic

and electromagnetic scattering which was previously developed by Burrows [5] for elec-

tromagnetic scattering by surfaces. The small-slope and other approximation schemes

are conveniently derived from this perturbation theory, at least for plane wave scattering

[4, 6]. Rather than synthesize plane waves to obtain the present results for point sources,

the perturbation result of Dashen and Burrows will be rederived directly for time-domain

Green's functions. In the plane wave case, once a formula is obtained for the derivative

of the scattered field with respect to upward rigid translations of the surface, it is easy

to derive a result for the scattering amplitude. This is because the plane wave scatter-

ing amplitude changes by a simple phase factor when the scattering surface is rigidly

translated [6]. There is no such simple way to obtain comparable formulas for Green's

functions since each plane wave making up the Green's function changes phase by a differ-

ent amount. However, as will be shown, for the case of monostatic scattering it is possible

to integrate the functional derivative of the field with respect to the surface shape after

the small-slope approximation is made for the surface fields. This proceedure results in a

simple expression for the echo of a pulse heard at the location of the origin of the pulse.

In the Burrows-Dashen result, the perturbation of the scattered field is expressed in

terms of products of the total field or its derivatives on the scattering surface. In contrast,

the Helmholtz-Kirchhoff formula expresses the scattered field itself in terms of products
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of unscattered and total fields on the scattering surface. In the Burrows-Dashen result,

reciprocity is manifest, but, in general, only derivatives of scattered fields are obtained.

In the Helmholtz-Kirchhoff result, reciprocity, though respected, is not manifest.

In section II the Burrows-Dashen perturbation result will be rederived directly for

point sources in the time domain . In Section III the new result for monostatic scattering

will be derived from the perturbation result. It will be compared to a corrected version of

Berry's result based on the Kirchhoff approximation.

II The Variational Principle and Perturbation Theory

The Burrows-Dashen perturbation scheme can be derived from the principle of least action.

Kohn [7] and later Altshuler [8] used specializations of the least actin principle to derive

variational principles for scattering amplitudes and the field scattered by plane waves for

the case of quantum potential scattering. Here these results are generalized to the case

of point sources and point receivers in the time domain in media with variable densities

and sound speeds. Furthermore, layered media with irregular fluid-fluid interfaces ( across

which pressure and normal velocity are continuous) will be considered. To treat point

sources it will be assumed that trial functions vanish at infinity because there is a small

dissipation. The general variational principle, which is just the expression of the principle

of least action, is interesting because it embodies the applications of Green's theorem that

go into a variety of approximations [9]. However, it will be used here only to treat the

very special case of a single Dirichlet boundary, constant sound speed and density, and

monostatic geometry. One advantage of approaching the perturbation formula through

the variational principle is that some of the complications of continuing normal derivatives

away from the unperturbed surface which were encountered by Dashen and Wurmser, can

be avoided. It should also be pointed out that formulas similar to those presented by

Dashen and Wurmser not only were given by Burrows, but also by Garabedjian in 1955

and apparently by Hadamard even earlier [10].

11.1 The Variational Principle

Consider acoustic waves in a medium with spatially variable ambient density, p(r) and

sound speed, c(r). The Green's function Ge, (e for exact) for the pressure at a point rl at
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time t' arising from an implisive source at ro at time to satisfies the wave equation
, V iV I Ve~f t' ro to - I Ot,

p(r')V'-(--VGe(rut;roto) c2 l) OGe(r,t';ro, to) -(r'.-r)b(t' - to). (1)

Boundary conditions are built into this equation: Ge and n. VGe/p must be continuous.

If they did exhibit jump discontinuities, the spatial gradient operators would give rise to

6 functions which appear nowhere else in Eq.1. These boundary conditions express the

requirement that the pressure G and the normal velocity, (n. OtVG)/p, be continuous.

Causal Green's functions are assumed here, so that

G.(r', t'; ro, to) = 0

if t' < to. Reciprocity in the time domain is expressed by [11]

1_, G(r, t'; ro, to) = I G(r,-to; r', -t'). (2)
Ar- A=ro)

A variational estimator r for G, is a functional of trial Green's functions, G1 and G2,

r(G 1 ,G 2), such that if Gi = Ge + egi, i = 1,2, (where gi is arbitrary except for certain

boundary conditions) then r(G 1, G2) - G. = O(e 2) for small e [12J. Consider two fluids

occupying regions fl+ and fl- which are separated by an interface S. Within each region

the sound speed and density are continuous, but across the interface they are allowed to

have jump discontinuities. Trial functions and the exact Green's functions are assumed to

vanish at infinity, since a small attentuation is assumed. Trial functions are assumed to be

causal as well. In the following equation I is a variational estimator of the Green's function

'G,, which depends parametrically on the source location, (r., to) and the receiver (or f

inal) location (rf, tt).

r(G 2,ri,ti;G,r., to) = G2(r,-to;r,-tf) +- G(r,tj;r,to)
pfro) (rfj) ~ o~

+ 0j dt' j dr'[V'G2(r',-t'; rj, -tf)" 1 j V'GI(rIt'; r., t)

-8t,G2(r', -f'; rft,-t/) Lr, ~, ,, (e, e; ro, t)

+ dt' L dS[J[G 2(r', -e'; rf, -tf )]A[-rd " VG'i(', e; r,, )]
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+ A[n'. V'G 2(r', -t';rf,-tf)--JJ[GI(r',t'; r,,t)]], (3)

where n is the unit normal to the interface S from 11- to S'+. The operator J here is the

jump across the interface S:

J[f(r)] = f(r+) - f(r-).

Likewise, the averaging operator A is

A[f(r)] = [f(r + ) + f(r-)]/2.

When G1 = G 2 = Gtriat, the volume integral in Eq.(3) in just the negative of the Lan-

grangian for free scalar fields obeying the Helmholtz equation [141. The linear terms in

G1 and G2 account for the fields here being driven by -function sources, and the surface

integrals are designed to account for boundary conditions at an interface

To show that r is a variational estimator of Geip, write Gi = Ge + egi, i = 1, 2. Then

integrate by parts, separately over Sl- and over time, to remove the gradient operation

and time derivatives from gi where possible, to show
1

r(G., rl , t t; G., r, t) = -)-G.(rf, tf; r.,t), 4)

1

r(G,, rl , tt; gi, r, t) = -- I-Ge(r , tt; ro, to), (5)
p(rj)

and

r(g 2 ,r,t;Getro,to) = -- o G(ro,-to;rt,-tt). (6)

This means that

r(G2,r, t ; Glrt)= r., -QG(r, tf;ro,to)+t(h, rft,t;cgi,roto), (7)

p(I)'

where f is the bilinear form r - Gi/p - G2/p. Since f is bilinear, the last term in Eq.(7)

is order e2, and Eq.(7) shows that r is a variational estimator. Note that if the Gi are

replaced by a single function 0, the variational estimator r is the classical action for the

field driven by -function sources. If 1 is an arbitrary superpostion of two fields, G,

and G2 , the variational estimator is seen to follow from the principle least action. The

integral along the surface S in the action represents a singular part of the Lagrange density.
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Physically it arises because there is work done if the interface moves under the influence

of a pressure difference across the interface.

For the case of a Dirichlet surface replace

J[GjI -G

and

A[n. VGj/p] - n. VGjp,

and for the Neumann case drop the surface integral over S entirely. Note that in the

integrals G2 and G, always appear with the same arguments. Hence one could omit the

arguments without danger of confusion. Note too, that any number of regions il could be

considered as long as interface integrals are included in the variational estimator.

11.2 Perturbations

The change in the Green's function caused by a small change in the shape or location

of the interface S is found from the variational estimator by choosing the trial functions

G1 and G2 to be the Green's functions associated with a neighboring interface, So. It is

assumed that the densities and sound speeds, p(r) and c*(r) can be continued smoothly

from Ill to fOl along with the Green's function on either side of the interface, GO [13].

Then the variational estimator shows that to first order in the displacement of the surface

from So to S, the Green's function G associated with S is given by
11 1

- 1 G(rf,tf; ro, t) - Go(r., -t.; rf, -tf) - - Go(rf , tj; r., t)
p(rf) pAr.) pArj

+ d' j dr'[V'Go(r', -'; rf , -ti)" "-V'Go(r, t; r., t,)

-0t,Go(r', -t'; rf, -tf) 1( ,Go(r,, e; r,, t,)]

+ . dt' dS[J[Go(r', -e'; rj, -tf )]A[- nr n V'Go(r', t; r., t.)

+ A[n' V'Go(r',-t'; rf,-tf)-1)]J[Go(9,e;r, t.)]].
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On the other hand, the unperturbed Green's function, Go, is exactly given by the same

formula with the regions fP+ replaced by the regions 0o. The interface integral vanishes

because Go is continuous across So, by assumption. If this analogous expression for Go is

subtracted from Eq.8, the left side is the perturbation of the Green's function. The linear

terms cancel on the right. This leaves the difference of the volume integrals which is of

order of the volume between the interfaces and the surface integral which is first order

because the jump in Go vanishes on the neighboring surface So. Separating the integration

over the upper + volumes from the - volumes gives
1

p(r) 6G(r, tf; r.,to) .

+ 1 dt' j - j dr'[V'Go. - V'Go - OtGo O(r.)O(r ) Go]+

+ 00 dt' / _[ dr,[V'Go. o_ -- VG n' -  -.. ...... o __1 _

+ j0 dt'jdSJ[Go]A[ 1 n' .V'Go)] +A[n V'Go--!]J[Go]]. (9)

1- is PGoI c(P(e)a 0

In this equation, the arguments of the Green's functions have been omitted; they are to

be understood as they appear in Eq.8. If the surface S is obtained from So by normal

displacement (r) into I)+ , the volume f + is diminished by f dSf and the volume fl" is

increased by this amount. The jump in the surface integral is found from

G+ - Gols ; G+ - GoJs, + (n- VG + - n. Vo)Is n. VG+(1 - 1--). (10)

Thus, using the boundary conditions satisfied by Go, the perturbation of the Green's

function satisfies,
1((/ bG(rf , tf; r0, t,)

oo 1* ,+ o,' 110 p(-+)

+1.dt' JdSf(r')[8t'G+ -0,G - 8,j-tj

+ _ dt', dSt(r')2n " VGo -Ln. VGo+(1 - L). (11)
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To first order it doesn't matter if the integrations are taken over S or So. This result can

be simplified still further by using

VGo" VGo = n. VGon. VGo + V11 Go - V11Go

and the boundary conditions, which require that VliGo and OtGo be continuous. Further-

more, for infinite interfaces, as in layered media, it is convenient to refer the displacement

of the surface to a horizontal surface. Then the displacment is described by its projection

onto the vertical axis, 6h(R). Surface areas transform by dS = dRhh. The perturbation

of the Green's function is now given by

1p Wy) (rj, tf ; r,, t.)

+ od/dh rn._. 11p 1

+ j d' JdRh(r') [n -In VG+(1 - &.-)- V,10o • V11Go(p. - -)

(4 -2r+pr+ C2(r-)p(r-))] (12

The analogue of this result for plane wave scattering can be found in Refs.[4, 6]. In a

layered medium it is clear that the perturbation of the Green's function will be a sum

of contributions from the perturbation of each interface similar to that given above. To

lowest order these perturbations simply add together. In the case of Dirichlet surfaces only

the first term of the integrand, involving normal derivatives, contributes with p- = 0.

It should be noted that the surface So is not generally a flat surface and that as a

consequence Go is not easily calculated. Nevertheless, Eq.(12) is useful in that it provides

an exact, albeit formal, expression for the functional derivative of the Green's function

with respect to the surface shape, h(r), since Eq.(12) is exact to first order in 6h.
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III The Small-Slope Approximation

Consider now the special case of a Dirichlet surface. Let the scattering surface be described

by

z = ch(R),

where, as above, R is a two-dimensional vector in the z - y plane. Denote the Green's

function associated with this surface by G, and consider what happens when the surface

is perturbed from z = ch(R) to z = (c + de)h(R). Then 6h is given by

6h(R) = (dc)h(R). (13)

Dividing the perturbation of G, by de gives the following exact (because Eq.(12) is exact

to first order in 6h) result for the derivative of the Green's function with respect to C.

dGc--G, (r/, tf; ro, to) -

L'0 d' J dR'h(R')ne . VG(r1 , t1 ;r, tl{h})n, - VG(r, t; r, t0 {eh}). (14)

On thd right side of this equation, the functional dependence of the Green's functions on

the scattering surface ch has been made explicit. The Green's function for the desired

surface, h(R), namely G1, is found by integrating from e = 0 to e = 1. The function G, 0o

is just the fiat ?,!rface (z = 0) Green's function which can be found fairly simply if the

density and sound speed depend only on the depth z. In performing the integration over

c, assume that the order of the integration can be changed as needed, and integrate over

e first. Then change the variable of integration from c to

z? = ch(W). (15)

One then obtains for the Green's function associated with the surface h(R),

G(rf, tf; rt,tlh) - G(r, tf; ro,to0) =

Sdl(R') 
(16j~tJ aj n .VG(r,tj;r',tl Z- h)c Gr,'rtl - h) (16)

In these expressions, the normal to the surface, n, is given by

S - EVh(R') ih(R') - ziVh(R' )  (17)

V1 + (eVh(R')) 2 = -/h(R)2 + (z'Vh(R'))2(
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In addition, in the last equation, the intermediate vector, r', is understood to be given by

r/ = (R',z'). (18)

It should be emphasized that Eq.(16) is an exact result for Dirichlet surfaces even when

there are sound speed and density variations.

Now assume that, in fact, sound speed and density are constant. The small-slope

approximation consists of replacing the normal gradient of the Green's function, Ge, by

twice the vertical derivative of the free-space Green's function, Gfe,, the Green's function

in the absence of any boundaries. In the present case, Giree is given by

Giree(rf, tf; ro, to) = -6(t! - to - Ir! - rol/c)/(4w lr - rol). (19)

Note that this differs by a sign and a factor of 4r from the conventional Green's function,

because, for the purposes of deriving the variational principle, it was convenient to have

the wave equation driven by a simple -function. It is now convenient to consider the field

O(r, t) produced by a pulse F(t) originating at ro. In the small-slope approximation the

differefice between a pulse received when there is a rough surface and the pulse received

when there is a flat surface located at z = 0 is given by

O(r, tf) - Of It(r, tj) = dto[G(rf, t; ro, tolh) - G(rf, tf; r., to0 O)]F(to)

4 2 1 h(R') dz',, , F(t- to - (Irf - r'l + Ir - rol)/c (20)Mr 1. 0tv d'Ol Ir! - rr - rol (0

The point of this section is to show that the z' integral can be performed when the source

and receiver coincide, i.e., when rf = ro = r. The main result is given in Eq.31 below.

It is a relatively simple expression but there is a good deal of algebra between here and

there. To see how this works out, first carry out the differentiation and then set the source

position equal to the receiver postion. Let

p = Ir- r'.

Without loss of generality, suppose that r = (0, z). Then

"~ ~ 1 /dRt jh(R!) z
(rj, t!) - t jt(r!, t1 ) = I
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F"(t - 2p/c) 2F'(t - 2p/c) F(t - 2p/c)] (Z- (21)

To deal with this integral use the identities [3]

F_ =  pc R' .VP (22)
2 R'2

and
pc R! ' (23)

Let I, be the integral of the term ipvolving the second derivative

1 I h(R')dz, F"(t - 2p/c) (z _ Z)2

40 4 dR'2 2d c )p z p2

_1 / h(' -1R.'.VF'(z-z')2

1 dR'I dz'- (24)
42 JJ 0  2pc R'2  p2

Write the last integrand as a divergence in two dimensions and use the identity

I = 2w 6(R). (25)

When the divergence operator is passed outside the inner integral, a term in Vh is produced

from the upper limit of the inner integral. In this way I, can be shown to be given by

Vh(R') F' (z - h(R'))2

IR 2  2pc p2

27 [h(o) dzP(t - 2(z - z')/c)
4r2 2c(z- z')

1 M I,(R) ,3F(t - 2p/C) (z -

-4V2] Jo d 2cp3  p2  (6

The last term in this expression can be combined with the second integrand in Ec.(21) so

that the scattered field at the receiver is now given by

t(rftf) - 1/ (r jij) L d , R ! Vh(R 2F' (z - h(R)) 2

2+ r Mh(O) ,p'(t - 2(z - z')/c)
4T2 fo 2(z - z' )

+ I (jh(R') d '(t - 2p/C)(Z- ez)2
+ 2 jd' 2cp3  p2
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+ / I R') F(t - 2p/c) (z -z)2

4v dR' dz' p4  p2  (27)

The next to last term, which will be denoted by 12, can be treated similarly to I, with

the result
1 R • Vh(R') F(t - 2p/c) (z - h(R'))2

12 dR' R R!2  P2  p2

2v [h(O) F(t - 2(z - z/)/c)
+7-i2.o d (z - z/) 2

1! Rh(R!) F(t-2p/c)(z-z')
2

47r2 .i d ' p4 p2 (28)

It seems a bit magical, but when this expression for 12 is used in Eq.(27), the integrands

involving F cancel one another. Furthermore, since

d F(t - 2(z - z')/c) _ 2F' F(
dz' z - z' c(z -') z-z"(

the integrals over z' alone can be performed. Finally, the scattered pulse is given by

Ft- 2(z - h(O))/c) F(t -2z/c)
0(rf, tf) - Ofuit(rf, tf) = 1 [ (z- h(-) F zt47r 2 '( "cl(z - ))' 2

1 dRR R Vh(R') F(t - 2p/c) +F(t - 2p/c). (Z - (30)
+4lr2Jf R!2  LF 4p2  + 2cp2  I p2

Bec, ';e the sign of the free-3pace Green's function is negative, the pulse reflected from a

flat ,urface at z = 0 is just
1 F(t - 2z/c)

47r 2z

This means that in the small-slope approximation, the scattered portion of the pulse

OSSA = -_, di,.a

is given by
1 F(t - 2(z - h(0))/c)

SSA(rf t1 ) = 4r 2(z - h(0))

1 dR R Vh(R) F(t - 2p/c) (t- 2p/c) (z - h(R)) 2  (31)

+ Tz(2R' LF 4p2  + 2c#Jp 2  P2

The only approximation used in obtaining this result is the small-slope approximation.

A similar result can be obtained for the Kirchhoff approximation by using the same

sorts of manipulations described here:

1 F(t - 2(z - h(O))/c)

,PKir(r,'t,) = 4v 2(z - h(O))
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1 ( Vh(R') F(t - 2p/c) + (t - 2p/c) (32)
dR R' I2 4p2 2cp2

This last result differs slightly from Berry's expression [3] in that no far-field assumptions

have been invoked.

Both the Kirchhoff and the small-slope approximations give the exact result for flat

surfaces through z = h(O). Both show tha scattering takes place only because the gradient

of the surface shape is non-vanishing. The two approximations differ only in that the

small-slope approximation includes the factor

(z- h(R'))2

p
2

This factor is the sine squared of the local angle of propagation at the surface. For plane

waves, the Kirchboff and Small-slope approximations differ by a factor of kzq/k 2 [6].

In backscattering, vertical components of incident and out-going wavenumbers are equal.

Thus the difference exhibited here between the Kirchhoff and Small-slope approximations

for point sources is consistent with the difference observed for plane waves.

IV Discussion

The primary results presented above are the variational principle and the subsequent

derivation of what is, in effect, an exact expression .for the functional derivative of the

scattered field with respect to the surface shape. This was used in the previous section

to derive a simple expression for the small-slope approximation for point sources in the

time-doman. The only approximation used to derive Eq.(31) is Eq.(19). The variational

principle should have general utility. It was shown in Ref.[9] that a variety of approxi-

mations can be based on the variational principle. If the trial Green's functions are the

same, the variational expression is guaranteed to be reciprocal. Furthermore, scattering

is described even if the trial Green's functions don't exhibit scattering. For example, one

might try to describe reverberation in the ocean by using trial Green's functions calculated

by the method of adiabatic normal modes.

What is surprising and annoying is that so much algebra is required to demonstrate the

small-slope approximation. Such a simple result deserves a simpler derivation. Further-

more, this result does not seem to be generalizable to bistatic scattering, nor to variable
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sound speeds, at least not without further approximations. It may represent one of a very

few situations in which there is something simple about the special case of backscattering.
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